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Al~ract--A quasi-one-dimensional, five-equation, homogeneous, nonequilibrium model has been devel- 
oped and utilized on a microcomputer to calculate the behavior of flowing, initially subcooled, flashing 
water systems. Equations for mixture and vapor mass conservation, mixture momentum conservation, 
liquid energy conservation and bubble transport were discretized and linearized semi-implicitly, and solved 
using a successive iteration Newton method. Closure was obtained through simple constitutive equations 
for friction and spherical bubble growth, and a new nucleation model for wall nucleation in small nozzles 
combined with an existing model for bulk nucleation in large geometries to obtain the thermal 
nonequilibrium between phases. The model described was applied to choked nozzle flow with subcooled 
water inlets based on specified inlet conditions of pressure and temperature, and vanishing inlet void 
fraction and bubble number density. Good qualitative and quantitative agreement with the experiment 
confirms the adequacy of the nucleation models in determining both the initial size and number density 
of nuclei, and indicates that mechanical nonequilibrium between phases is not an important factor in these 
flows. It is shown that bulk nucleation becomes important as the volume-to-surface ratio of the geometry 
is increased. 

Key Words: critical flow, nucleation, bubble growth, bubble number density, cavities, vapor generation, 
interfacial area 

1. I N T R O D U C T I O N  

The first paper in this sequence (Shin & Jones 1993, this issue, pp. 943-964) described the 
technology relative to the initiation or inception of the flashing phenomena and showed the 
development of a model for nucleation from the walls in pipes and nozzles. This model was utilized 
to describe the development of the bubble population and the resultant onset of thermal 
nonequilibrium between the phases in such situations. The model provided a method of predicting 
the superheat which develops and, for the first time, provides a link between the microscopic 
description of wall-cavity-based nucleation and bubble growth, and the macroscopic global flow 
parameters. 

When the new model was applied to flashing flows in nozzles, it was shown that negligible voids 
developed upstream of the throat, even in the most energetic of cases where throat superheats 
approached 100 K. Predictions developed from the model of superheat at the flashing inception 
point:~ were within 2 K, and resultant confirmatory calculations of critical discharge rates within 
3%. 

First principles calculated of void development requires both the superheat and area density for 
phase transformation, the latter requiring both the number and size of the bubbles. The new 
nucleation model provides this information. It is the purpose of this paper to provide a rational 
framework for the computation of void development downstream of the inception location in pipes, 
nozzles and restrictions. Further, it will be shown that excellent agreement is obtained between 
calculated and experimental results confirming that, while slip is not an important factor in critical 

tAuthor for correspondence. 
:~The point of flashing inception is considered to be equivalent to the "point of net vapor generation (NVG)" in boiling. 

For nozzles, this point is taken to be the throat. 
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and near-critical, low-quality flow conditions, thermal nonequilibrium can be an overriding factor 
in obtaining predictive accuracy. 

The general framework used in the numerical development is not particularly new except for 
some specific details which will be delineated in the development. Rather, what is, perhaps, new 
in addition to the new description of thermal nonequilibrium development, is the use of such a 
detailed numerical model on a personal computer, in this case a Hewlett-Packard model 9816. This 
machine is based on the 32-bit MC-68000 microprocessor so can be considered the forerunner of  
more modern 32-bit machines. As such, the use of such methods on the newer and faster 80386 
microprocessor running at 16-24 MHz should be considerably faster than the experience reported 
herein. The practicality of such computational frameworks on "desk-top" computers thus appears 
to be within reach. 

2. D E V E L O P M E N T  

Flow Regimes 

Among the variety of  internal two-phase flow structures, the bubble, slug, churn, annular, 
dispersed-annular and dispersed regimes have been identified. These classifications and their 
respective transition criteria both have a qualitative nature, so models constructed with the use of 
these flow maps may utilize existing transition criteria for comparison with data. Advanced, 
best-estimate computer programs for transient analysis of two-phase systems, such as TRAC 
(LASL 1979) and RELAP (Chow & Ransom 1984), apply flow regime maps with void fraction, 
c, as the main transition criterion. Indeed, while other methods exist which are more detailed and 
which are, perhaps, more accurate for specific transitions, the use of void fraction has achieved 
wide recommended general usage due to its simplicity (Wu et al. 1981; Ishii & Mashima 1983). In 
what follows, two variants of  this flow structure scheme are considered. A comparison of the 
resultant features of  these two maps will be discussed following identification of  the given equations 
particular to the two situations. 

Flow regime 1 [figure l(a)] 

Flashing inception is assumed to result in a bubbly mixture. The limits of this regime vary 
depending on the rate of  void development. For  slowly developing systems, the transition is 
generally taken to be at approximately c ~ 0.2. For  rapidly expanding systems, the transition to 
slug or churn flows may be inhibited until quite large void fractions up to >0.7 are obtained. For  
the purpose of  this discussion the bubbly mixture is assumed to exist up to E = 0.3, consistent with 
previous assumptions (Wu et al. 1981; Dobran 1985). Note that Ishii & Mashima (1983) showed 
that for E > 0.3 spherical bubbles must touch. For  bubbly flows to exist at larger void fractions, 
obviously the bubbles must distort. Such is the case observed in liquid-metal M H D  generators. In 
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Figure I. Assumed flow diagrams of flashing liquid in nozzles: (a) flow regime map 1; (b) flow regime 
map 2. 
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moderately accelerating systems, agglomeration begins to occur after bubbles begin to touch, thus 
leading to transition of the bubbly structure to the adjacent regime. 

As void development continues past E > 0.3, it is assumed that this coalescence results in the 
formation of larger bubbles with the region between filled with small bubbles. This bubbly-slug 
regime is taken to exist throughout the region 0.3 < E < 0.8, whereupon the slugs have grown so 
long that they, in turn, coalesce to form annular flow or mist-annular. Dispersed droplet flow is 
assumed to exist for void fractions > 0.9. The region between E = 0.8 and 0.95 is considered herein 
to be transitional zone coupling slug and dispersed liquid flows. 

Flow regime 2 [figure l(b)] 
In this case, the structure of slug flow is not developed and the zone between E = 0.3 and 0.7 

is considered as a transitional zone. This zone may be characterized by intensive interaction or 
coalescence of bubbles and deviations from sphericity, characteristic of the churn-turbulent regime 
(Solbrig et al. 1978). In this case, dispersed flow is assumed to occur as a breakdown of the 
continuous liquid filaments resulting in continuous vapor dispersed flows. 

Two-phase Flow Model 

For the current case the interest is in the lower void fraction regions below dispersed flows. In 
such cases, the vapor is tightly coupled to the liquid from a mechanical viewpoint, relative velocities 
are small and variations are due more to distribution than local slip. It is thus assumed that 
mechanical equilibrium exists and the phases have identical velocities and pressures. Vapor 
temperatures are assumed to be at local saturation conditions, since the primary source of heat 
transfer is through the liquid continuum which may be subcooled, saturated or superheated locally 
(according to the local pressure). 

The model thus chosen is a quasi-one-dimensional, transient model which uses two continuity 
equations (mixture and vapor phase), one energy equation for the liquid, one momentum equation 
for the mixture and one bubble transport equation. These are expressed below: 

continuity equation for the mixture 

dQM + ! £  
dt A dz (eMAw) = 0; [1] 

continuity equation for the vapor phase, 

&Or 1 d 
O----t- + A ~z (EOvAw)= Fv; [2] 

momentum equation for the mixture, 

dw dw 1 dp 1 
d~ + w-~z = OMdz o f  r; [3] 

energy equation for the liquid, 

d 1 d p d  dE 
d t [ ( l - -E)OLUL]+-~z[ (1 - -e )OLULAW]+~Z[(1 - -e )Aw]=p-~- -Fv i r - -Aiq ; I . e t ;  [4] 

and 

conservation of  bubble number density, 

ON. 1 f_~ 
d--t- + -A (N, Aw) = Jw + J,.  [51 

Note in these equations that t is time, w is taken as the z-direction velocity, and 0 is density, 
in general with the subscripts M, L and V representing mixture, liquid and vapor respectively, 
phases not necessarily at saturation, and the subscripts F and G representing saturated liquid and 
vapor. Also, A is the cross-sectional duct area, Fv is the volumetric rate of vapor generation, p 
is the pressure, fr is the volumetric friction force (friction force per unit volume), D is the duct 
diameter or hydraulic diameter, u is the specific internal energy, c is the void fraction, i is the 
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enthalpy with the same subscript definitions as for density, qi'~net is the net interfacial heat flux, A i 
is the interfacial area density, NB is the number density of the bubbles and J is the volumetric 
equivalent nucleation rate with the subscripts w and B representing wall and bulk, respectively. It 
is assumed that there is no slip. This is in accordance with the intention that this model be utilized 
to predict void development in critical or near-critical flows of high velocity where relative velocities 
are expected to be of negligible importance. 

The unknowns in this equation set include the void fraction, ~, pressure, p, axial velocity, w, liquid 
temperature, TL, and bubble number density, NB, where TL is tied to the specific internal energy 
Ue through the caloric equation of state. 

Constitutive equations-- f low regime map 1 

The constitutive equations for wall friction and interfacial heat and mass transfer must be 
provided for closure as well as those for nucleation. 

Wall friction. For single-phase flow (E = 0) the shear stress is taken to be 
I 2 

zw = ~CrQL W , [6] 

where the friction coefficient is correlated with the liquid Reynolds number, ReL, as 

QL wD 
C f  : Cf(ReL) with Re L = -  [7] 

#L 

The Blasius friction coefficient Cf is used for turbulent flow and # is viscosity, with the same 
subscripts as for other properties. The wall friction force per unit volume of the mixture is 

dz QL w2 
fr = Z w -  = 2 C r - - ,  [8] 

A dz D 

the duct perimeter is ~. For two-phase flow, a friction multiplier, ~b 2, is utilized so that 
2 2 

fr = 2CrtP 20Mw [9] 
QLD ' 

where the friction coefficient and Reynolds number relationships are given by [7]. The multipliers 
used were taken from Beattie (1973) as included in RETRAN (McFadden et al. 1981), where a 
flow regime map similar to that utilized herein was used. The two-phase friction multiplier 
equations adopted in terms of the quality, x, are: 

for E <0.3,  

,,ov t L , f  [101 

for 0.3 ~<E <0.8,  

q~2 = [1 + x ( ~ - 1 ) ] ° s  [1 + x(3.5 ~--1) ]°2 ; [11] 

for 0.8 ~< E < 0.95, 

,)]o' I , 
and 

for E > 0.95, 

lnterfacial heat and mass transfer, The rate of vapor generation is limited by the heat transfer 
rate and interfacial area according to the relation 

Fv = - - ,  [14] 
Aiv~ 
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where 

0~,'.~t -- ~ ~I~ " nk dAi, [151 
i kffi L,V 

where ~ is the heat flux for phase k and nk is the unit outward normal to phase k. Relationship 
[14] shows that evaporation is due to energy absorbed or released at the interface in the form of 
latent heat of phase change. 

(a) For bubbly flow, e < 0.3, the model assumes that the zone of intensive nucleation is very 
narrow, L,,¢ ,~ L, where L is the nozzle inlet length, and is located very close to the minimum area 
portion of the nozzle. This has been confirmed by calculations and is consistent with the distributed 
nucleation model presented in the companion paper (Shin & Jones 1993). In this case, uniformly 
sized bubbles may be assumed to exist at any cross section. From sphericity, the interfacial area 
density Ai is given by 

hi = 4nR2 NB, [16] 

where NB is the bubble number density and RB is the bubble radius. Also, 

4 3 ~ A i R  s [17] e = ~nRBNB = 

so that 

3£ 
Ai = (36nNB)'/3E 2/3 = R--B" [ 18] 

The growth of the bubbles is assumed to be controlled by transient conduction. An analytical 
solution of thermally-controlled bubble growth for constant values of liquid superheat due to 
Scriven (1959), expressed by an approximation given by Labuntzov et al. (1964), gives the heat 
input from the liquid to the bubble-liquid interface as 

qi'net = hAT, up, [19] 

where the heat transfer coefficient is given by 

kLNU 
h = - -  [20] 

2Rs 

with the Nusselt number expressed in terms of the Jakob number as 

12 [ 1 [  n '  213 It-] 
Nu= Ja l+~ j~a  ) +-6~aJ" [21] 

The Jakob number is defined as 

CpLQL(TL- Tsat) CpLQLATsup 
Ja - - [22] 

Ov AiFG ~v AiFG 

In this case, CpL is the specific heat of the liquid and T is the temperature with subscripts L and 
V representing liquid and vapor, respectively, and the subscript sat indicating saturation. Similarly, 
ATs,p is the liquid superheat and AiFG is the latent heat. While [21], in general, is valid only for 
uniform superheat and not for variable pressure fields (Jones & Zuber 1978), it has been shown 
to be approximately correct when the local superheat is used (Wu et al. 1981). 

Ca) For bubbly-slug flow in the range 0.3 < E < 0.8 it is assumed that some of the bubbles 
coalesce to form larger (Taylor) bubbles, while others continue to grow according to [19]-[22]. 
Thus, two classes of bubbles are assumed to exist and grow at different rates. 

Since vapor generation may take place on the surface of both kinds of bubbles, the total 
interfacial flux is given by 

0~,'.,t = 0 ~ A s  + 4 ~ a s ,  [23] 

which is the sum of the net heat flux going into evaporation along the slugs plus that for the small, 
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spherical bubbles. The subscripts for heat flux are S for Taylor-like bubbles and B for small, 
spherical bubbles which have not yet agglomerated. The Taylor bubbles are assumed to be cylinders 
which, at ~ = 0.8 absorb all smaller bubbles and merge with one another to form annular flow (Wu 
et al. 1981). The interfacial area density is thus given by 

Ai = Ais + AiB, [24] 

where again the subscripts represent Taylor bubbles and spherical bubbles. For  the Taylor bubbles 
the area density is 

4E 2/3 
Ais - • i/6 D [25] 

Smax 
and for the spherical bubbles left in the slugs it is given by 

3~B 
AiB = - - .  [26] 

RB 

Note that the total void fraction is the sum of that due separately to the slugs and the bubbles: 

= ~s + ~B. [27] 

The void fraction for the Taylor-like bubbles is given by the relation 

__ 1 {E __ ~Bmax [ 1 (E -- ::m~X)_(l Bma:Srnax)l} , [28] 
Es 1 - -  EBmax 

where eBmax = 0.3 and ESma, = 0.8. The heat transfer coefficient appropriate for Taylor bubbles is 
approximated by that given in the TRAC-P1A code (LASL 1979) for slug flows correlated in terms 
of the Stanton number, 

NUL 
StL --= ReLPrL = 0.0073 [29] 

with Pr the Prandtl number. Thus, the interfacial heat transfer to the Taylor bubbles is 

q~ = O.O073QL WCpL (TL -- Tv). [30] 

(e) For  the case of  transitional and dispersed droplet flows where E > 0.8, the difference is in 
the friction multiplier as expressed in [10]-[13]. The heat and mass transfer occur on liquid droplets 
formed as a result of  bubble coagulation and droplet entrainment from the lateral surface of  the 
Taylor bubbles. In this case, the interfacial area density is given by 

3(1 - c )  
A~ - - - ,  [311 

Rd 

where Rd is the droplet diameter. In this case, the net interfacial heat flux is 

kLNu 
qi~,,et = ~ (TL -- Tv). [32] 

In this case, the Nusselt number is assumed to be constant at a value of 16, as suggested by Solbrig 
et al. (1978). The droplet diameter is assumed to be 

aWe 
Rd = 2Qv(Wv -- wL) 2' [33] 

where the Weber number, We, is assumed to be constant at 5. Note that although no slip is 
considered in the conservation equations, droplet heat and mass transfer require a value for the 
relative velocity and this is calculated based on solid particle dynamics. A simple formulation which 
eliminates the transcendental nature of  the drag-Reynolds number relationships was used (Jones 
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1984). The terminal Reynolds number for the droplets is taken as a function of the Archimedes 
number, mr, as 

I i~ [1  + 0.0487(4Ar)°'452] -l Ar <3.227 x 105 

Re = ( A r  >/3.227 x 105 [34] 

L 1"74x//-~ Re 2 105 , ~< × 

where 

Ar = fQL A06-------~3 [35] 

The gravitational acceleration is g, the droplet diameter is 5 and the positive liquid-vapor density 
difference is AQ. The Reynolds number is based on the droplet diameter and the terminal velocity, 
taken to be the same as the relative velocity. 

Constitutive equations--flow regime map 2 

In bubbly flows there are no differences from flow regime map 1. The surface area density is 
proportional to E 2/3 assuming N 2/3 is constant. If the void fraction exceeds 0.3, the surface area 
density is influenced by two opposing effects. On the one hand, the continuing bubble growth and 
distortion of their shape tend to increase the area density, Ai. On the other hand, the coalescence 
and formation of large bubbles tends to reduce Ai. The variation of Ai with void fraction here may 
be small so it can be assumed that A i remains constant having the value obtained at E = 0.3. The 
heat flux for bubbly flow is obtained from [19]-[22]. 

For the case where c i> 0.7, the transition to dispersed droplet flow occurs and the interfacial 
area density is given by 

Ai - 3(1 - E____ ) = (36/rNd)l/3( 1 _ £)2/3.  [36] 
Rd 

Thus, the variation with e is assumed to be symmetrical about E = 0.5. Thus, Ai ~ E 2/3 if E < 0.3, 
and A~ - (1 - E) 2/3 if E > 0.7. The Nusselt number for the heat flux is determined by [31]-[33]. 

Nucleation Kinetics 

The overall flashing process is governed by nonequilibrium thermal conditions with superheated 
liquid and saturated vapor generally coexisting in the flow field. The initial superheat of the liquid 
is generated due to rate limitations on the phase change process during the initial departure from 
liquid saturation as the flow decompresses. The phase change rate limitations are due to both an 
absence of interfacial area and a lack of thermal driving potential. It is the initial nucleation process 
which generates the first interfacial area. This process takes place in the zone between the saturation 
line and the throat in the converging portion of the nozzle. Nucleation will occur generally at cavity 
defects on solid surfaces, these surfaces predominantly being wall area in small geometries having 
qualitatively large surface-to-volume ratio. As the geometry increases in size so that the surface-to- 
volume ratio increases, it is expected that bulk nucleation on imbedded impurities will become 
important. At this time, there is no definitive knowledge that the transition from wall-dominated 
to bulk-dominated nucleation will occur. In what follows, both processes are described, and later 
comparisons will show the effects of including the bulk nucleation process in geometries larger than 
those typical of bench-scale laboratory experiments. 

Wall nucleation 

The wall nucleation process is described in Shin & Jones (1993). The formation, growth and 
departure of a bubble from an active nucleation site are considered as a cyclical process consisting 
of two periods. During the bubble growth period the saturation temperature inside the bubble 
represents the boundary condition for a thermal wave to penetrate the wall. 

During the waiting period after departure before the appearance of another nuclei at the site, 
superheated liquid contacts the wall resulting in a wall temperature between saturation and the 
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superheat temperature• This wall temperature then relaxes causing both the solid and liquid to 
become increasingly closer to the temperature represented by the liquid superheat• The next bubble 
is nucleated when the wall-liquid contact line temperature reaches the temperature corresponding 
to the saturation temperature inside a bubble of critical radius equal to the cavity size• 

Critical size increases as the waiting period, tw, decreases, corresponding to a lower contact-line 
wall superheat• If tw vanishes, the maximum value of active cavity size, (R ..... ) is achieved due to 
the lack of time for the contact line to equilibrate towards the superheat temperature. This 
maximum value is independent of the flow conditions. This particular cavity size is a function only 
of the thermodynamic state of the particular fluid-solid system, and results in a minimum surface 
energy for the nuclei formed. 

For the case where the dwell time, tw, vanishes, the nucleation frequency at the cavity is also 
maximized• The departure size is, therefore, essential in determining the growth time, and hence 
the nucleation frequency• This departure size is determined from a balance of drag and surface 
tension forces. Analysis of the activation criterion and the departure size for the nuclei allowed 
nucleation frequencies to be obtained from the data. These were then correlated empirically with 
superheat as 

fmax 4 3 [37] = 10 A Tsup, 

where fr~, is the maximum nucleation frequency in hertz and ATsop= (TL = Tv) is the liquid 
superheat in degrees Kelvin. This dimensional correlation provided the least scatter of any method 
examined and so was chosen over some, perhaps more desirable, dimensionless relationships. 

The nucleation site density was then determined by assuming there is a maximum energy 
available for nucleation in the cylindrical disk of thickness 6 = ~/~(QO/QL) having mass equal to 
that in the newly-formed vapor nucleus. Maximum nucleation site densities were thus determined 
for each data set and correlated empirically as 

N*s = (2Rd)2Nns = 10-7R *-4 and so Nns = 0.25 x 10 -7 Ra [381 

where the superheat-based cavity size is given by 

2trTv 
P~s = [39] 

Qv AiFo(TL- Tv) 

with rr the surface tension. The bubble departure radius was determined as 

R0 0.818 ( K2 y,. ,(  1 y ,  
-- R-~= x / ~  \Wec----~] \Rec--~] ' [40] 

with WeeL and ReeL the Weber and Reynolds numbers for a critical-sized bubble based on the liquid 
velocity. The dimensional form of this equation is 

• Lt- dl t T i  _J ' [411 

where the momentum diffusivity is v and the wall shear was given by the Blasius relation 

~, = 0.079 ReD °25 QL W2 2 [421 

The coefficient K was used to consider the decrease in drag due to the nonsphericity of the departing 
nuclei but was taken as unity in all calculations. Equations [38]--[42] were combined to obtain 

Tv - -  - -  - -  [43] Nn, = 8.41 x I0-9[(-TL Z-~v)  ( \Qv Ai,G,/_I 2---r-: I-(°,,,o<,, 
Combination of the departure frequency per site with the site density yields the wall nucleation 
rate as 

Nnsfmax ¢ 
Jwmax = h ' [44] 
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which in dimensionless terms becomes 

J~max R________ 4 / \ 
A Tsup,t R N 2 3 

J* ,~  --- - 1.296 x 102[Qv} 2 H*(z) OL CpL Re~4" [45] 
WL \eLl aT,  iLL 

Due to the specific shape of a linear nozzle, the geometric function H*(z) becomes 

2 7 AR z 
H ' ( z )  = ~-~N [ 1 - .  5(-~N) (~--~N)J. [46] 

It should be noted that experiments in small geometries having diameters of the order of 10 -2 m 
were used to develop the equations for the wall nucleation rate identified above. Under these 
conditions, experiments have shown that wall nucleation dominates. Wall nucleation was assumed 
to occur in the region between the saturation line and the location of maximum superheat--the 
transition from a converging to diverging or straight nozzle section. After this point, bulk flashing 
is assumed to occur and the wall assumed to be at saturation, precluding nucleation. 

Bulk heterogeneous nucleathgn 
A model for heterogeneous nucleation in the bulk fluid was developed by Soplenkov & Blinkov 

(1983). The assumption was that the liquid always carried suspended particles whose size 
distribution is n (6). At nucleation sites, only supercritical particles ~ > 6" can be active, where di* 
is the diameter of the critical spherical vapor nucleus and depends on the physical properties of 
the liquid and degree of metastability. Thus, the total number of nucleation sites where evaporation 
and bubble formation can occur is 

NB (Gi) = .f~" n (~i) d~, [47] 

where Gi is the Gibbs number (Skripov 1982). An empirical correlation for Na = Na(Gi) was 
obtained using experimental data on the blowdown of initially subcooled water through short tubes 
4 <~ LID <<. 10, L ~< 0.3 m, with sharp entrances where Gi >t 1500. The result was 

log(Na) = 12.5 - 0.15 log(Gi). [48] 

The nucleation source term for the numerical model is thus obtained as 

dNB Na (Gi)w 
JB = d--T- Am---Z - '  [49] 

where Az is the mesh spacing. The overall concept of bulk nucleation is that the process is 
"sudden," having a characteristic time Az = Ax/w. Thus, the source term is taken to be zero 
everywhere except for that mesh cell corresponding to the transition from a converging to diverging 
(or straight) geometry, consistent with maximum superheat at this location. Bulk nucleation thus 
vanishes everywhere except for the throat cell, and in this cell is additive to the continuous wall 
nucleation determined from the model of Shin & Jones (1993). 

Numerical Methods 

For solving the equations given by [1]-[5], a semi-implicit method (EPRI 1983) is used having 
the Courant stability criterion 

Az 
At ~ < -  [50] 

Wmax ' 

which significantly increases the allowable time step compared with explicit methods and makes 
use of the microcomputer feasible. The channel is divided into a number of cells with uniform 
spatial mesh spacing, Ax. All thermodynamic variables are cell-centered, whereas velocities are 
computed at cell faces. 

As an illustration, the finite-difference form developed for the vapor mass conservation equation 
is 

1 A t [  ] F~+tAt. [51] (E n + 10 ~,+~ - E nO ~,), + ~ ~ (E"O ~, wn + i a ), +1/2 - (E n 0 ~, wn +IA ),_112 = 
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Relationships between the cell-edge and cell-center variables used are based on full donor cell 
differencing, which is known to be extremely stable, resulting in 

~'~+ ,2 = f ~b~ if w~+ ,ix ~> 0 [52] 
~,~+ j if wi+ 112 < O, 

where [¢]T _= [Qv, QL, UL, E, Na]. Other equations are treated identically. 
The equation of  motion has the form 

Wn+li+ i/2 = --fin+ i/2 (P~+,I -- p ' ]+i )+jn+i /Z  , .  [53] 

where fiT+ 1/2 and JT+ ~/2 are calculated at the old time step and have the form 

A t [ Q  1 ] [54] 

and 

and where 

I }[0 , ] Ji+l/ l=Q~lWn+ll2 1--A---x(wn+3/2-wn-112)  7~+ K"Atlw"l ,+ [55] 
I/2 ' 

BI 

B2 

B3 APf-i +H4×4 

B4 

a p f  

(1 -- E)~AT[,, 

AC 
ANf  

H - I  

H4 × 4 is a 4 x 4 matrix. If  [58] is multiplied by the inverse of H the result is 

B2 

B3 

B4 

App_I + 
(1 - -OV^T v 

] i  ~ L i 

AEf 

N~. 

_ a - I  

CI 

C2 

C3 Ap~+, = H  -I 

C4 

]Icl C2 D2 

- C 3  Ap~+ i = 0 3  , 

(74 D4 

Ol  

D2 

D3 

D4 

[58] 

[59] 

K" --f~(w"lw"l).  [56] 

Using [53] the number of  variables is reduced by one where equations with the velocity wi+"+~/~ 
appear. 

The overall system of equations [1] written in a partially implicit form represents a nonlinear 
algebraic equation set for all unknown variables at the new time step. The system is solved using 
the Newton iteration shown in the following equation. The v-superscript indicates successive 
iterative approximations to variables at the new time step with superscript n + 1. All equations are 
linearized by Taylor's expansion about  the latest iteration values of  the unknowns• The linearized 
form of [51] is 

Ap~ c + (ET+ " ~ n .  ± E "  " A " tk  ap),  -AX-xx ,/2Qv,+,,~--,+~/2~.,+.2T ,-,/2~v,_.,~ ,-,/2/~, ,/~) 

_(OFvyAt}WAE,[Q~,i _(OFv)~At]_[( 1 _E),AT[,](OFv)~ At 
t 019 ) i  t O, ) i  " tOTLJi (1 :~:))' 

l } = ( C 0 ~  --  e"0~,) + ~ Axx [(E"O~, w ' A ) i +  112 - (e"Lo~, w ' A ) i _  i/21 - r~ , i  At . [571 

In matrix form, the equation set may be written as 
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A v v The first of the four equations involves the corrections P i - i ,  Ap~ and Ape+I, only where 

giAp~._, -4- ap~ + L,Ap~+I = M,. 

The system of equations in [60] written in each mesh cell from 1 to N is tridiagonal: 

L3 

K~_~ 1 Ls_ 2 

Ks-i 1 
Ks 

LN- i 
(I + Ls) 

1 L t 

K 2 1 L 2 

ap~ 

ap~ 

ap~ 

~p~-2 

A P N -  I 

m I 

M2 

M3 

= 

Ms - 2 

M s -  l 
Ms 

[60] 

[61] 

v A The solution of [34] gives the corrections Ap~. Knowing these corrections, we get AEi, TL/and 
AN~ from [59]. These corrections will then be added to p~, E~, T v and N~, and the iterative process Li 

repeated until the condition max(Ap~/pi) < • is satisfied, where ~ is a sufficiently small number. The 
present case used a = 10 -3, which resulted in converged results (smaller values of • producing 
negligible change) requiring 3-4 iterations per time step. 

Boundary Conditions 

In general, we can say that the numerical solution to the problem was pressure-forced. That is, 
the inlet pressure boundary condition is given along with the stagnation inlet state of the fluid and 
an assumption of vanishing void fraction and bubble number density at the throat and an 
assumption that the flow was choked (i.e. exit downstream pressure sufficiently low). The balance 
of the results are computed as described. Boundary conditions were achieved by adding additional 
cells with the subscripts 0 and N + 1. For subsonic flow through the inlet boundary the relations 
KIAp[ + Ap~ + LIAp[ = MI with p0 = const and Ap[ = 0 were utilized. In addition to the condition 
on P0, we impose initial liquid temperature TL0 equal to the inlet value, and an inlet void fraction 
and bubble number density equal to zero. The inlet velocity w 0 was determined by linear 
extrapolation upstream based on computed results. 

For subsonic flow through the outlet boundary, 

KNAp~_I + Ap~ + LNAp~+I = M~ 
[62] 

p . + l = p o o = c o n s t  and Ap~v+l=0. 

T v and NN+ 1 were determined by linear extrapolation downstream based The values of e~v + 1, Ls + ~ 
on computed results. If  the flow through the outlet boundary was supersonic, it was assumed that 
Ap~v+l = ApN, and then all variables in the N + 1 cell were linearly extrapolated downstream. 

3. RESULTS AND DISCUSSION 

Numerical Results 

The experience with the computations was reasonably good from the viewpoint of using a 
microcomputer for the calculations. The entire program required approximately 80 kB of main 
memory on the HP-9816S. Cell lengths required for stable, converged results in typical calculations 
were 5 mm for the BNL geometry (Abuaf et al. 1981), representing 110 cells, and ,,,2.5 mm for 
the Marviken geometry (EPRI 1982) (40-70 cells) and for the geometry of Sozzi & Sutherland 
(1975) (64 cells, results not shown). 

The computational times required to reach a steady-state solution usually took 200-300 time 
steps with each time step requiring ~ 4  internal iterations in the early stages of solution and 1-2 
iterations near steady state. A single iteration required approx. 40 s s o  that calculation times were 
8-10 h. A typical case was set up during the day and run overnight with the results ready the next 
morning. Since the computer was completely dedicated to the problem, there was no difficulty in 
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Figure 2(a-c). Calculations for the nucleation zone for the conditions of Ardron & Ackerman (1978), 
Run C35 (Tin = 111.5°C, Pin = 1.59 bar, G = 7740 kg/s-m 2, AT, u p = 1.66 K). 

undertaking computat ions in this manner.  Moreover,  it would be expected that newer and faster 
microcomputers would require significantly less time for the same calculations. 

Comparison with the Experimental Results 

Void development at the throat 

In virtually all previous flashing models, the nucleation zone is treated as a single point of  flashing 
inception. This has been justified since the zone of  supersaturation in many eases is quite narrow. 
However, in this zone, the voids which develop from the nuclei form the basis for interfacial mass 
transfer and subsequent growth downstream. It is, therefore, important  that both the size and 
number be determined so that accurate calculations of  void development may be undertaken. 

Calculations were made for all runs reported by Bailey (1951), Brown (1961), Sozzi & Sutherland 
(1975), Ardron & Ackerman (1978), Abuaf  et al. (1981) and Celata et al. (1982). The two cases 
with the smallest and largest calculated throat  void fractions are shown in figures 2 and 3. The 
smallest void fraction was computed for the Ardron & Ackerman (1978) run C25 having a 
superheat at the throat  of  1.66 K with 1.6 bar inlet pressure. As seen in figure 2(a), while the 
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nucleation site density increased to approx. 140 m -2 with overall bulk-equivalent wall nucleation 
rates to about 5 x 108 m -3 S -t,  the void fraction increased only to ~ 10 -5 [figure 2(c)]. 

The case with the largest computed throat void fraction was Run 39 from the data of  Brown 
(1961) (figure 3), having a throat superheat of 81.6 K, an inlet pressure of 68.4 bar and a computer 
bulk-equivalent wall nucleation rate at the throat  of  slightly less than 5 x 1022 m -3 s-i ,  14 orders 
of  magnitude larger than that of  Ardron & Ackerman (1978). In this case, the throat  void fraction 
increased to 0.009. This value is also negligibly small and provides confirmation of  the original 
hypothesis of  Abuaf  et al. (1980, 1983). This further explains why the critical flow rates of  all these 
runs can be accurately confirmed (within --, 3%) by correctly predicting the throat pressure through 
the superheat and then assuming single-phase flow. 

Void development downstream--small nozzles 

Calculations for the long, vertical nozzle in the experiments of  Abuaf  et al. (1981) taken at 
Brookhaven National  Laboratory  (BNL) are shown in figure 4. In figure 4(a) comparisons are 
shown between calculated void fraction and pressure profiles and those measured in the experiment. 
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Figure 3(a-c). Calculations for the nucleation zone for the conditions of Brown (1961), Run 39 
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Figure 4. Compar ison between experimental and calculated distributions of  pressure and void fraction 
and other void development parameters for the BNL nozzle Run 273 (Abuaf  et al. 1981) (P0 = 0.573 MPa, 
To = 421.85 K, AT0 = 8.4 K, mcxp = 8.71 kg/s, th=l~ = 8.8 kg/s, p~ = 0.442 MPa): - - ,  flow regime map  1; 
- - . - - ,  flow regime map  2; . . . .  , bubbly model exclusively. (a) Pressure and void distributions; (b) void 

development parameters. 

In figure 4(b) curves are included showing the liquid temperature, TL, vapor temperature, Tv, 
interfacial area density, Ai, mixture velocity, w, bubble number density in the region up to 30% 
voids, log(N), and local frozen sonic velocity, c. 

In all these calculations, it was confirmed that the calculated effect of  bulk nucleation based on 
[48] was negligible. This lends additional support to the experimental evidence that for nozzles of  
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this small diameter wall nucleation predominates. Note also that the correlations which are used 
to calculate the wall nucleation rate were based on this assumption. 

Three methods of  calculation were used to make these calculations shown in figure 4: 

I. Flow regime 1 consisting of  bubbly, bubbly-slug, transitional and dispersed flows 
(-- .--) .  

2. Flow regime 2 consisting of bubbly, transitional churn turbulent and dispersed 
flows. 

3. Bubbly flow for any void fraction ( - - - ) .  

One can see that the three calculated values of  void fraction in figure 4(a) differ slightly due to 
the differing interfacial area density for phase change. Bubbly flow gives the highest void calculated, 
since the interfacial area density is the largest. Model flow regime 1 gives a smaller void fraction 
since the area density is lower and decreases after e = 0.3 [figure 4(b)]. For  the third model, flow 
regime 2, the interfacial area density is constant after E = 0.3, but the void fraction is still lower. 
This is because as seen in the pressure profiles, this third model results in increased superheat 
offsetting the effect of  reduced interfacial area density. 

While the void fraction in the latter case is closer to the data, the pressure profiles are further 
away. The reasons for these results are unknown but show both the need for careful modeling of  
the surface area density and for more definitive experiments to delineate the type of  behavior to 
be expected. 

Figures 5-7 show similar results for different BNL runs having the conditions summarized 
in table l (the conditions for Run 273 are summarized in the caption to figure 4). In these cases, 
only the bubbly flow regime results are shown. Table 2 compares the exit void fraction for the 
bubbly flow calculation compared with that for the flow regime l results in comparison with the 
data. It is seen that in all cases, the inclusion of  a more realistic flow regime calculation, which 
considers the reduction in interfacial area density due to agglomeration, produces results closer to 
the data. 

Critical flow of  saturated water through a Laval nozzle having a throat diameter of 3.84 mm is 
shown in figure 8 for the data of  Karasev e t  a l .  (1977). In this case, wall nucleation dominates bulk 
nucleation by 2 orders of magnitude, again affirming that this is the predominant mode of  void 
formation in the nucleation zone in small geometries. It is seen that the flow becomes overexpanded 
and goes supersonic downstream of  the throat. Substantial expansive cooling of  both liquid and 
vapor are seen. Similar results are obtained for all the subcooled inlet runs of Sozzi & Sutherland 
(1975). 
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Figure 5. Comparison between experimental and calculated 
distributions of pressure and void fraction and other void 
development parameters for the BNL nozzle Run 148 
(Abuaf et al. 1981) (P0=3-05bar, T 0=384.35K, 
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Void development downstream--large nozzles 

Figure 9 shows calculations for a round-entrance, large-diameter (D = 0.51 m) pipe used in 
Marviken experiments (EPRI 1982). The single point at the inlet represents the measured inlet 
pressure used to drive the flow calculations. In figure 9(a) results are shown with Ja = 0, no bulk 
nucleation. Figure 9(b) shows calculations where the bulk nucleation model is included. The 
number density is substantially larger in the early stages of decompression near the inlet when bulk 
nucleation is included and the voids begin to grow earlier in the nozzle but little effect on the 
temperatures or pressures is seen. However, near the exit where void development becomes 
significant, the number densities approach each other and void growth becomes similar. This shows 
that in the larger geometries, as the volume-to-surface ratio increases, the role of bulk nucleation 
can be expected to become increasingly important. 

Figure l0 shows the effects of bulk nucleation in a comparison between calculated and 
experimental critical mass flow rates of the Marviken experiments having the same diameter as that 
of figure 9 (stagnation temperature, To = const). It is obvious from this case that the inclusion of 
bulk nucleation for this larger geometry substantially improves the prediction of the critical flows, 
due mainly to improved computation of void development. In this case, accurate calculation is 
crucial since the flow rate is void dominated. 

For the case of transient flow calculations in large nozzles, the computed results for Marviken 
agree well with the experimental values (figures 11 and 12) up to about 30 ms, after which the liquid 
temperature begins to become affected by the nonuniformity in the vessel temperature. Again this 
indicates the effect of the inclusion of bulk nucleation in the overall process of the initial generation 
of bubble nuclei. 

It has long been common wisdom that nonequilibrium becomes increasingly important as the 
length of nozzles becomes shorter and shorter with respect to the diameter. The converse is also 
considered true. These concepts are confirmed in figure 13, which shows that as the L/D ratio of 
the nozzle increases, the flow and the model approach that calculated by homogeneous equilibrium, 
giving a further indication of the lack of importance of mechanical nonequilibrium under these 
circumstances. 

Table 1. Summary of  conditions for the BNL experiments (Abuaf e t  al. 1981) 

BNL Run P0 (bar) T O (K) AT 0 (K) p~ (bar) r h , ~  (kg/s) rh¢~ (kg/s) 

148 3.05 394.35 12.80 2.06 7.50 7.80 
288 5.30 422.35 4.80 4.591 7.25 7.27 
309 5.559 422.25 6.75 4.05 8.80 8.23 
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Table 2. Comparison of calculated and experimental values of exit void fraction for the 
BNL data 

BNL Run Bubbly flow only Flow regime map 1 Measured void data 

148 0.66 0.59 0.55 
273 0.69 0.61 0.57 
288 0.52 0.49 0.49 
309 - -  0.71 0.70 

Model 1 is bubbly flow only; model 2 is for flow regime map I. 

4.  C O N C L U S I O N S  

A computational framework for calculating the behavior of flowing, initially subcooled liquids 
in pipes and nozzles has been described for use on a microcomputer. The model uses the new 
distributed nucleation model of  Shin & Jones (1993) coupled with a previous model for bulk 
nucleation developed by Soplenkov & Blinkov (1983) to determine appropriate initial conditions 
for flashing and void development downstream of the throat. The model, a five-equation, 
mechanical equilibrium (no slip), thermal nonequilibrium model incorporates recent advances in 
the theory of distributed wall nucleation in small ducts, as well as a previously developed model 
for bulk nucleation on suspended particles in larger geometries. 

The model consisted of mixture and vapor mass conservation equations, a mixture momentum 
equation, the liquid energy equation and a bubble transport equation. Spherical bubble growth was 
calculated by traditional thermally-limited growth methods using local superheat. For closure, a 
relatively simple two-phase wall friction model was utilized, represented by a friction multiplier 
having different formulations in four different regions of void fraction. 

Semi-implicit methods were used for differencing with all properties computed at the cell centers, 
and a donor cell method was used to calculate convective flux effects with velocities computed at 
cell boundaries. The system was solved by Newton iteration. Typical computational times on a 
Hewlett-Packard 9816 microcomputer based on the MC-68000 processor chip at 8 MHz were 
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40-45 s/time step and a total of  8-10 h for a converged solution with all variables within 1 part  
in 103 . In general, both qualitative and quantitative agreement was found between the data and 
computations.  For  small geometry, bulk nucleation has negligible effect all data examined. For 
large geometry, bulk nucleation adds an important  component  necessary for accurate determi- 
nation of  the interfacial area density (necessary for phase change and resultant void development). 

While pressure profiles were best predicted by bubbly flow methods for all void fractions, the 
void profile were best predicted using a bubbly-churn-dispersed model which is felt to calculate 
the interfacial area density more appropriately. Some work obviously still needs to be accomplished 
in this area to bring the calculations into alignment with the magnitude and trends for all variables. 
The deficiency is thought to be in the computat ion of  the interfacial area density. 

Void fractions at the throat  in nozzles were found to be negligible in all cases examined, which 
includes most  experiments of  subcooled inlet critical flashing flows described in the literature. This 
confirms previous hypotheses of  Abuaf  et al. (1980, 1983) and provides a powerful means of  
obtaining confirmatory computat ions of  critical flow rates in such situations by computing 
equivalent single-phase flows based on the computed bulk superheat at the throat. 

It was shown that careful attention must be paid to the modeling of  the interfacial area density. 
For  two-phase flows of  initially subcooled liquids, the generation of interfacial area required for 
phase change begins as a nucleation process. Both wall and bulk nucleation processes are 
important,  the former predominating the "small"  geometries, the latter in "larger" geometries. An 
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Figure 13. Critical flow for different size Marviken nozzles 
(EPRI 1982): (1) model presented, D = 0.5 m, L = 0.955 m 
and L/D = 1.91; (2) model presented, D = 0 . 3 m ,  
L = 1.266 m and L/D = 4.22; (3) homogeneous equilibrium. 

accurate balance of the two is necessary to obtain proper starting conditions for downstream void 
development, these conditions requiring both the number and sizes of nucleated bubbles. At this 
point, it is not known exactly what is meant by the two words "small" and "large" except as they 
relate to the surface-to-volume ratio of the geometry in question. For the computations described 
herein, both qualitative and quantitative agreement was found for downstream void development 
in comparison with the existing data, indicating that the nucleation models utilized appear 
adequate. 

The nonequilibrium model upon which these calculations and comparisons were based did not 
utilize any assumption regarding thermal nonequilibrium. Rather, the degree of thermal nonequi- 
librium obtained in each situation was the result of the nucleation and bubble growth models 
combined with appropriate conservation laws for mass and energy. Furthermore, the calculations 
herein utilized a no-slip model. The results were generally very good in comparison with the 
experimental data. This would indicate that mechanical nonequilibrium is not an important factor 
in the flashing void development of initially subcooled flows. This conclusion seems reasonable in 
view of the fact that the velocities were generally quite high, corresponding to critical flow 
conditions, and relative velocities were generally quite low. 

Specific conclusions include: 

1. The bubble nucleation density and the resultant number density at the throat in 
nozzles with a subcooled inlet may vary by many orders of magnitude. 

2. The throat void fraction is generally negligible in nozzles with subcooled inlets, 
even though the bubble number densities can be quite large. 

3. The void development downstream of the throat is dependent on the size and 
number density of nuclei at flashing inception, these values being provided 
accurately by the new wall nucleation model for small geometries. Assumptions 
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5. 

. 

of constant values for initial bubble size and/or number density, or any equivalent 
combination of assumptions for flashing inception, are incorrect. 
Bulk nucleation has a negligible effect for small geometries. 
Bulk nucleation becomes important for large geometries as the volume-to-surface 
ratio increases, but insufficient data exist to determine the transition factors. 
The accuracy of the void calculations when compared with the existing data 
indicate that mechanical nonequilibrium is not an important factor in critical flow 
flashing of initially subcooled flows. Rather, thermal nonequilibrium, if accurately 
computed, is sufficient to provide adequate computation of global parameters. 
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